Budding Yeast CTDK-I Is Required for DNA Damage-Induced Transcription
نویسندگان
چکیده
منابع مشابه
DNA damage checkpoint in budding yeast.
Eukaryotic cells have evolved a network of control mechanisms, known as checkpoints, which coordinate cell-cycle progression in response to internal and external cues. The yeast Saccharomyces cerevisiae has been invaluable in dissecting genetically the DNA damage checkpoint pathway. Recent results on posttranslational modifications and protein-protein interactions of some key factors provide ne...
متن کاملA pathway of targeted autophagy is induced by DNA damage in budding yeast.
Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of aut...
متن کاملThe budding yeast protein Chl1p is required to preserve genome integrity upon DNA damage in S-phase
The budding yeast protein, Chl1p, is required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination and aging. In this work, we show that Chl1p is also required for viability when DNA replication is stressed, either due to mutations or if cells are treated with genotoxic agents like methylmethane sulfonate (MMS) and ultraviolet (UV) rays. The chl1 mutation caused syntheti...
متن کاملPhosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint.
Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents ...
متن کاملPervasive antisense transcription is evolutionarily conserved in budding yeast.
Antisense transcription, or transcription on the opposite strand of the same genomic locus as another transcript, has been observed in many organisms, including yeast. Several antisense transcripts are known to be conserved across various species of yeast, and a few antisense transcripts are associated with functional regulation of the sense transcript. We detect antisense transcription from ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Eukaryotic Cell
سال: 2003
ISSN: 1535-9778,1535-9786
DOI: 10.1128/ec.2.2.274-283.2003